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Abstract—In Part | of this work the asymptotic near-tip stress and velocity fields of a crack
propagating steadily and quasi-statically along the interface between a ductile and a brittle material
are presented. The ductile material is characterized by J-flow theory with cither lincar hardening or
ideal plasticity. The brittle material is characterized by lincur clastic behavior. The cases of anti-
plane strain and plane strain gre considered.

The lincar-hardening solutions are assumed to be of variable-scparable form with a power
singularity in the radial distance to the crack tip. Results are given for the strength of the singularity
and for the distribution of the stress and velocity ficlds as Functions of the hardening parameter.
However, the amplitude of the fickds, or plastic stress intensity factor, is left undetermined by this
asymptotic analysis. For the case of plane strain, it is found that two distinct solutions exist with
slightly dilferent singularity strengths, and very dilferent mixities on the interfacial line ahead of the
crack. For hardening small enough, one of the solutions corresponds to a tensile-like mode, whereas
the other solution corresponds to a shear-like mode. These two solutions coalesce at an intermediate
value of the hardening, if a cortain bimaterial parameter is not zero. In this case, no variable-
separable solutions are found for larger values of the hurdening parumeter. On the other hand, if
the bimaterial constant vanishes, the two solutions remain distinet for all values of the hardening
purameter up to the perfectly-clastic limit,

The ideally plastic solutions are obtained by meuns of an appropriate assembly of clastic
unloading and active plastic sectors, the latter being of either centered-fan or constant-stress
type. For simplicity, the substrate material is assumed to be rigid, and the ductile material to be
incomprussible. The perfectly-plastic results for the stress and velocity fields in this case are con-
tinuous and consistent with the small-hardening results showing a tensile- as well as & shear-like
solution,

In Part [T of this work, the corresponding small scale yielding problem will be solved numeri-
cally, and the relevance of the asymptotic solutions will be investigated. Where appropriate, the
plastic stress intensity factors corresponding to the asymptotic solutions will be determined as
functions of the clastic stress intensity factor and the mixity of the applied ficlds. This information
will be usceful in determining “resistunce curves™ for crack growth along brittle/ductile interfuces.

1. INTRODUCTION

Interfaces between brittle and ductile materials are present in many important composite
materials, from cermets and other modern structural ceramics to packaging structures for
electronic devices. It is often the case that such materials fail by the propagation and
coalescence of pre-existing or “nucleated™ cracks along these interfaces. Thus, the propa-
gation of microscopic and macroscopic cracks along interfaces between brittle and ductile
materials can be an important factor in determining the overall strength, toughness and
reliability of composite materials with brittle and ductile phases. [t is also possible, however,
that a given crack at the interface would find it energetically favorable to branch off the
interface and penetrate into either the brittle or the ductile phase, but if the interface is

t Currently at the Department of Acrospace Engineering. Mcchanics and Enginecring Science. University
of Florida, Gainesville, FL 32611, US.A.
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assumed to be inherently weaker than both materials, then the crack would most likely
propagate along the interface. This assumption is implicitly made in this work.

The main objective of this work is to study the steady and quasi-static propagation of
anti-plane and plane strain cracks along interfaces between brittle and ductile materials
under small scale yielding conditions. The work is divided into two parts: the first part.
which is the subject of this paper. deals with the determination of the asymptotic stress and
deformation fields near the tip of the growing crack, and the second, which is to be addressed
in the sequel. makes use of the finite element method to produce the corresponding full-
field. small scale yielding solutions.

The results of this work would be useful in the theoretical prediction of “resistance
curves™ for stable crack growth along brittle 'ductile interfaces. This phenomenon, which is
well documented (Green and Knott. 1975) for the propagation of cracks in homogeneous
ductile materials under slowly increusing external loading. is of great practical significance,
because for these materials the level of external loading required to propagate a given crack
unstably. and hence ultimately break the structure. can be many times the level required
for the inttiation of crack growth. Therefore. a detailed understanding of this phenomenon
is desirable to make a more efficient use of materials in the design of structural components
which are prone to failure by crack growth. Essential to the understunding of this phenom-
enon is the determination of the asymptotic near-tip ficlds associated with a propagating
crack. This knowledge can not only give direct partial information about the structure of
the phenomenon. but can also be used in conjunction with numerical analyses of practical
configurations to gain a more detailed understanding of the process as a whole. Tt will
be assumed in this work that the same phenomenon applies to crack growth along
brittle/ductile mterfaces through cssentially the same mechanism of plastic dissipation
in the ductile half of the composite matenial. The authors are not aware ol any published
experimental work in this arca.

Duce to the analytical diflicultivs involved, the bulk of the rescarch on near-tip asymp-
totic fields has been associated with homogencous materials, characterized by infinitesimal
flow theory with either lincar-hardening or perfect plasticity. Rice (1982) presented a
complete analysis of the asymptotic structure of the near-tip stress and deformation fickds
of a crack growing quasi-statically into an clastic/perfeetly-plastic solid, including explicit
solutions of the governing equations for anti-plane strain, plance strain and planc stress.
This reduces the perfectly-plastic problem to that of finding an appropriate assembly of
clastic and plastic sectors satisfying certain continuity and boundary conditions. In anti-
plane strain, the first successful assembly of sectors for a Mises material was given by
Chitaley and McClintock (1971). In plane strain, Slepyan (1974) presented the cor-
responding assembly of sectors for the Tresca material in both modes 1 and 1. Inde-
pendently, Gao (1980) and Rice er al. (1980) produced results for the Mises material in
mode 1 (v = 1/2), and Drugan er al. (1982) generalized these results to the case of v # 172,
Ponte Castaficda (1986) gave a solution for the mode 1l plane stress problem. The cor-
responding linear-hardening problems were addressed by Slepyan (1973), who considered
anti-planc strain crack growth in a modified deformation-theory material; by Amavigo and
Hutchinson (1977}, who considered anti-plane strain, as well as plane stress and plane
strain, crack growth in a J,-flow theory material, but neglected plastic reloading; and by
Ponte Castafieda (1987a), who extended the work of the previous authors to include
reloading and mode H solutions. All of these asymptotic solutions lcave certain parameters
undetermined in the expressions for the stress and deformation ficlds near the tip of the
moving crack. In the perfectly-plastic case. the parameter in question is the size of the
plastic zone ahcad of the crack, but this parameter does not appear in the lowest-order
term of the asymptotic expansion of the ficlds, and its determination is not essential. On
the other hand, in the lincar-hardening case the amplitude of the lowest-order term of the
asymptotic cxpansion for the stress and deformation ficlds, or plustic stress intensity
factor. is undetermined from the asymptotic analysis, and its determination is an important
problem. Under the assumption of small scale yielding. this problem was addressed by
means of an approximate variational technique by Ponte Castaiieda (1987b). Other related
full-field studies addressing different types of constitutive behavior include the finite element
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works of Dean and Hutchinson (1980), Parks er al. (1981), Sham (1983) and Narasimham
et al. (1987).

The understanding of interfacial fracture is at a much earlier stage of development,
and thus the bulk of the work has dealt with stationary cracks in linear-elastic materials,
building on the basic contributions of Williams (1959). England (1965), Erdogan (1965),
Rice and Sih (1965), Willis (1971) and Comninou (1977). For a review of some of the more
recent contributions, the reader is referred to the papers by Rice (1988) and Hutchinson
(1989). The first contributions dealing with material nonlinearities include the plane stress
work of Knowles and Sternberg (1983), addressing finite deformations, and the work of
Shih and Asaro (1988. 1989). and Parks and Zywicz (1989) (see also Zywicz, 1988). dealing
with power-law hardening. and perfectly-plastic behavior, respectively. In the context of
crack propagation, very few contributions can be counted at this time: the early work by
Witlis (1971). who applied the local form of the Griffith virtual work criterion to cracks
propagating along the interface between dissimilar anisotropic elastic materials: and more
recent work by Hutchinson ez al. (1987), who considered the possibility of crack propagation
paralleling an interface between dissimilar elastic materials. To the knowledge of the
authors, no contributions concerning crack propagation along interfaces between nonlinear
materials have yet appeared in the literaturet, and in this regard this work constitutes one
of the first contributions in this area.

This part of the work is divided into two main sections dealing with the determination
of the asymptotic near-tip stress and velocity fields associated with crack propagation along
the interface between a brittle and a linear-hardening material, or between a brittle and a
perfectly-plastic material, under anti-plane and plane strain conditions, respectively. The
procedure used in the solution of the lincar-hardening problem follows the formulation
developed by Ponte Castaneda (1987a), and the procedure used in the perfectly-plastic
problem follows the work of Rice (1982).

2. ANTL-PLANE STRAIN

2.1, Fornudation of the linear-hardening problem

Figure la refers to a two-dimensional crack propagating steadily and quasi-statically
along the interface between a ductile material on the upper half (denoted material No. 1),
and a brittle material on the lower half (denoted material No. 2). Let x; ({ =1, 2, 3) be a
Cartesian coordinate system of fixed orientation travelling with the crack front in such a
way that the x; axis coincides with the straight crack front at all times. Also let e, be the
unit vector corresponding to the x, direction. Similarly, let r, 0 be polar coordinates
corresponding to x, (2 = 1,2) and e, e, be the corresponding unit vectors. The crack tip
moves with velocity V = Ve, with respect to the stationary coordinate system X,. In our
steady-state analysis, the crack-tip speed Vis constant, and therefore the material derivative
of any ficld quantity is given by

()= -V0. (N

It should be noted that this relation still holds in an asymptotic sense when the motion of
the crack front is non-uniform, but quasi-static.

The dependent variables of this problem are the anti-plane shear stresses 1, = 6,, and
the anti-plane velocity vy, which are functions of the in-planc coordinates x, only. In terms
of the polar components of the stress vector T and the velocity v, the equation of equilibrium

tThe present work, as well as related work by W. J. Drugan on ideally plastic solutions for growing
interfacial cracks, and by P. G. Charalambides ef al. on the mechanics of a growing crack paralleling an elastically
constrained thin ductile layer. were reported at the Third Joint ASCE/ASME Mechanics Conference, held at the
University of California, San Dicgo. 9-12 July 1989.
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Fig. la. Crack-tip geometry.

a

Fig. Ib. Stress strain curve in shear for the ductile material,

takes the form
(rrr),r+ r(!.ll = 0‘ (‘))

where we have used the fact that the inertial and body forces in this problem are zero.

In this section, we assume that the constitutive response of the ductile material on the
upper half of the interface is characterized by J,-flow theory of plasticity with a bilinear
stress-strain curve in shear as shown in Fig, Ib. Thus, the stress-strain relation for this
material under general loading is given by

G = (1/G'"y[T+Ax], (3)

where

A=(x "= D],

G = Ve, is the engineering strain-rate vector, T = 1 is the stress-rate vector, 1. = |t} is the
effective stress, and « is cither « or unity, depending on whether the given material point is
in an active plastic zone or in a region of elastic behavior, respectively. Here z = G!"/G'",
the ratio of the tangent modulus to the elastic modulus in shear of material No. 1, is the
appropriate hardening parameter.

As noted by Ponte Castafieda (1987a). (2) and (3) form a system of three first-order
PDEs in the two stress components and the single velocity component that are homogeneous
in the radial measure r and therefore it is sensible to look for variable-separable asymptotic
solutions of the form
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(r.0) = Kpl,vl(o) Qrry, t(r.0) = Kpl}’:(o)(?-n’)"' ty(r.0) = Kpl( V/G‘”)}',(H)(an)"/s,
4)

where the peculiar choice for the radial dependence of the velocity (r'/s) is made so that
the corresponding angular variations remain bounded as x — 0, and where the plastic stress
intensity factor K. defined by

Ky = li_n(} (2rr) T 1y(r, 0),

is undetermined by the asymptotic analysis. Ponte Castafieda (1987b) has shown that the
plastic stress intensity factor of a steadily propagating crack in a homogeneous material of
the type described above under small scale yielding conditions is given by

Ky = x(2)(ty) I K)

where 1, is the yield stress in shear, K is the applied elastic stress intensity factor, and « is
a dimensionless parameter depending on a that needs to be determined from the solution
of the full small scale yielding problem. We expect analogous results for the present problem,
and this will be addressed in Part II of this work.

Putting expressions (4) into (2) and (3) results in a system of three first-order ODEs
in the vector y = (¥,, y2, y3) such that

YO =f(l.y:s.0), 0<0<n), &)

where the components of the vector function [ are given in Appendix A. The parameter
is in turn determined by the functions

r0) = i +p30]"2,
$(0) = rij1. = —scos0+sin 0{y.(0)/y.(0)], 6)

in such a way that unloading (x jumps from « to 1) occurs at #/,, when the effective stress-
rate of the particle vanishes, or when

$(0)) =0, (M

and reloading (2 jumps from 1 to «) occurs at 85, if the effective stress of the particle regains
its unloading value, or if

1(0,)/(sin0,) = y.(0,)/(sin 0)* = 0. %)

The solutions in the different regions need to be connected through appropriate con-
tinuity conditions across the boundaries between such regions. It can be shown (Ponte
Castafieda, 1987a) that the stresses and the anti-plane velocity must be continuous across
the unloading and reloading boundaries. Denoting by [ ] the jump in a field as 0 increases
infinitesimally across such a boundary, this implies that the angular variations of the fields
must satisfy

l=Wl=Wl=0. 9

In the lower half of the interface, the governing equations are the equilibrium equation
(2), and the linear stress—strain relation corresponding to an elastic material. This stress—
strain relation can be considered a special case of (3) with « = 1, and no residual plastic
strains. For this reason, and also for asymptotic consistency, the resulting fields in the lower
half will also have the variable-separable form (4) with the same singularity 5. but here the
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velocity needs to be normalized with respect to the elastic modulus in shear of the brittle
material. G'~". The corresponding ODEs associated with these equations can then be solved
explicitly for the angular variations of the fields. The result is

it = —(B/s)cos {s{#— a3y —4].
Yoy = (B s)sin[s(0—o)—0], (—n <<,
vty = Beoss(H —9), (o

where B and d are arbitrary constants.

The statement of the problem is completed by the specification of the boundary
conditions on the crack faces (# = +n). and the appropriate jump conditions across the
brittle ductile interface (0 = 0). The first set of conditions which requires that the traction
stress vanishes on the crack faces, reduces to

viltn) =0 tn

The second set which requires the continuity of the traction stress and of the displacement.
reduces to

a0 +) = 10—,
,"‘(“’F) = f’,)'x(”*‘)‘ ”2)

where = GG and where in the derivation of the second cquality, we have made use
of the fact that, on the line ahead of the crack, displacement continuity implics velocity
continuity. Note that the first equality was implicit in the definition of the plastic stress
intensity Factor A Also implicit in this definition is the normalization,

10y =1, (13

for the angular variations of the stress and deformation fields.

The sccond of conditions (1), and condition {13) suftice to completely specify the fields
in the britte material ( ~ 7 < 0 < 0) by determining £ = s/sin (sn) and 8 = —n. This result
can then mturn be used in combination with conditions (12) to specity the boundary values
of the tields on the upper half at ## = 0+ . The final result is

v {0+) = —zficot (sm).
ya+) =1
(0 +) = sfleot (sm). (14)

where we have also made use of the stress-strain relation for the ductile material in
establishing the first condition above.

This new problem of a crack propagating along a brittle/ductile interface is formally
sumilar to the problem solved by Ponte Castaiieda (1987a) for the crack propagating in
a homogencous lincar-hardening material ; the only difference being that the boundary
conditions on the crack line are not those of mode HI symmetry, but instead the more
complicated conditions specified by (14). Thus the new problem reduces 1o solving the
nonlincar cigenvalue problem specified by the third-order system (5) subject to the boundary
conditions (14) on the interfacial line and the boundary condition (11) on the upper face
of the crack. This problem is to be solved for the eigenvalue s and the system of eigen-
functions y(0) for given valucs of the parameters x and ff. Because the boundary conditions
{14) are not homogencous, it is not obvious that this is a well-posed cigenvalue problem.
However, it can be casily verified that if y is a solution corresponding to the normalization
120y = 1, then ¥ = Ay is also a solution corresponding to the normalization y.(0) = A
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This follows from the homogeneity of the system (5) in y, and the nature of the boundary
and interfacial conditions. The boundary condition on the crack face is clearly
homogeneous. and the conditions on the interfactal line are such that the angular variations
of the fields y(0) are lincarly related to each other. Furthermore, it is not difficult to verify
that the problem on the lower half is a regular Sturm-Liouville problem for y; with
Yi+57v, = 0, subject to a homogeneous boundury condition vy — n) = 0 at the lower crack
face, and a boundary condition of the form 330+ )} +7y:(0+} = 0 on the interfacial line,
where » is determined by the solution of the problem on the upper half.

The above eigenvalue problem is solved by means of a shooting method making use
of a Runge-Kutta-Verner fifth- and sixth-order scheme to perform the relevant numerical
integrations. Thus we guess the value of s for given « and f, and hence determine the initial
values of the dependent variables y{0+) through (14). We then integrate eqns (5) to find
the values of 1{(#) for 0 < # < n. checking to determine when unloading and reloading occur
in order to make use of the appropriate value of z. Once we have the values of y(rn), we
check to see whether y,(n) is zero, and we iterate in our guess for s until convergence is
achieved by means of an appropriate numerical scheme,

Note. however, that we cannot use (5) to find directly the values of 3,(0+). but we
can easily take the appropriate limits analytically to find that

T+ s+A(1—5%2)
»+) = WW"-*—(——/ .

¥2(04) = afi(1 +5)cot (sm),
.i"'ﬁ{{}'*} = "“Szfla. {;5}

\ ® tan? (sm)
= (. :&)(' T et )

Similarly, note that eqns (5) are numerically ill-conditioned at ¢ = =, but we can
integrate them to 0 = m—¢, and make ¢ as small as necessary, Since y,(0) is well-behaved
near ¢ = r, this approximation yiclds results as accurate as needed. Finally, we note that,
for the purpose of comparison with the results of Ponte Castaniceda (1987a), the final results
depicted in the following subsection are renormalized such that

where

rith)y =1 {16)

2.2, Linear-hardening results
The results of this section are summarized in Tables | and Figs 2 and 3. Figure 2 is a
plot of the strength of the singularity, », versus the square root of the hardening parameter,

Table La, Strength of the singularity, unload- Table Ib. Strength of the singularity, untoud-
ing and refoading angles versus hardening in ing and reloading angles versus hardening in
anti-phane strain (ff = |) anti-plane steain (f = 0)

% K i, i, % X #, i,

08 -0 48173 8R.600 0.8 —-0.46487 88300
0.6666  ~0.46594 87703 0.6666  —0.4368%  86.829
0.5 ~0.43928  B6.486 0.5 —0.39444  54.386
0.3 ~0.38725 84280 0.3 —0.32529  79.808
0.2 -0.34339 82144 0.2 -~0.27676 76,085
0.1 ~0,26952  77.6(0 0.1 ~0.20711 69824
0.05 ~020419  72.406 0.05 -0.15297 63980 179999
.01 -0.09937 60761 179.999 0.01 -0.07325 52874 179.947
0.005 -~-0.07166 36609 {79970 0.005 —-0.05285 49206  179.912
0.001 - 003297 49301 {79.910 0.001 —~0.05285 42884 179840

0.000t ~0.01064 43274 179.843 0.0001 -0.00792 37674 179.776
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Fig. 2. Strength of the singularity as a function of hardening in anti-plane strain for two
values of fi.

2, for two values of the ductile to brittle ratio of clastic moduli (f = 0 and 1). It can be
seen that s is significantly stronger for f = | that for # = 0. It is worth mentioning that the
case of ff = 0 corresponds exactly to the case of the propagating crack in a homogencous
lincar-hardening medium. This is due to the well-known symmetries of the mode I
problem. Also, as for the homogencous lincar-hardening material, it is observed that
s~ —x" for small a.

Tables 1 present values of s, 0, and 8, for 10 * < a < I, and the two values of ff
mentioned above. It is found that reloading occurs for 0 < o < a* tor values of 2* ranging
between 0.01 and 0.05, depending on the specific value of . For a* < o < 1 a two-region
(loading/unloading) solution exists, and for 0 < x < a* this solution switches over to a
three-region (loading/unloading/reloading) solution, where the reloading sector is very
small,

Figures 3 present plots of the angular (fixed r) variations of the stresses and velocity
for the two above values of f, and for a small value of the hardening (x = 0.001). We note
that the difference in the distribution of the ficlds for u lurger value of the hardening is not
very significant, but for small enough hardening the characteristic distribution of the
perfectly-plastic solution of Chitaley and McClintock (1971) is clearly observed. Also,
interestingly, changing the value of ff only scems to alfect significantly the velocity dis-
tribution in the centered-fan sector, and not elsewhere.

2.3, Perfectiv-plastic results

The problem of a crack propagating along the interfiace between a perfectly-plastic
material and elastic material is an important problem that merits a thorough investigation.
In the present study, however, we will be satisfied with presenting results for a particularly
simple special case for the purpose of comparison with our linear-hardening results. The
special case in point is that of a crack propagating along the interface between an elastic/
perfectly-plastic solid and a rigid substrate corresponding to a zero value of f§. This case
is of practical interest, and its solution can be obtained by reinterpreting the solution
of Chitaley and McClintock (1971) for the homogeneous elastic/perfectly-plastic solid.
Obviously, this solution satisfies the boundary condition on the upper face of the crack,
and, additionally, satisfies the appropriate interfacial conditions in the line ahead of the
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Fig. 3b. Angular variations of the stress and velocity fields in anti-plane strain for small hardening
(x=0001)and ff = 1.

crack. Thus, the anti-planc velocity vanishes in the interfacial line, as it should by continuity
with respect to a rigid substrate. On the other hand, we do not need to worry about the
stress conditions because the rigid substrate will accommodate trivially any level of shear
stress arising from the condition of traction continuity. Hence, the solution of the interfacial
perfectly-plastic growing crack with § = 0 is given by the Chitaley and McClintock fields
on the upper half, and a trivial velocity distribution on the lower rigid half. These results
are given in Appendix B. Also, as mentioned in the previous section, the corresponding
linear-hardening results for # = 0 are identical to the homogeneous linear-hardening results
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of Ponte Castafeda (1987a). and therefore we refer the reader to that work to infer
the appropriate comparisons between the linear-hardening and perfectly-plastic interfacial
growing-crack solutions. We will simply remark here that under the normalization of the
radial dependence of the velocity prescribed in the previous section {r°:5). not only do the
angular variations of the stresses in the linear-hardening problem appear to approach those
of the perfectly-plastic problem, but the same behavior is also observed for the
corresponding angular variations of the velocity.

3. PLANE STRAIN

3.1. Formulation of the linear-hardening problem

The same configuration of Fig. la with the obvious generalizations applics to this
problem. and hence egn (1) also holds here. On the other hand, the dependent variables of
this problem are the in-plane stress components g,,. the out-of-plane normal stress com-
ponent o4, and the in-plane velocity components r,. Alternatively, we can also make use
of the corresponding cylindrical components of the stress tensor o and of the velocity vector
v. Noting that under the planc strain assumption, these variables are functions only of the
in-plane coordinates x,. the quasi-static equilibrium equations reduce to

{P(;,,); + Topp — Tpg = 0, { {7)
(raw), +cwa+o,, =0, (18)

for u bilincar flow theory solid in the upper half, the appropriate stress-strain relation is

D = (/E[+e"YE =™ Tr (21 +AS], (19)
where
A= (32)(x '~ 6. [,
D = (172} [Vv+(Vv)] is the rate-of-deformation tensor, X = & is the stress-rate tensor,

-

S = a—(1/3) Tr ()1 is the stress-deviator tensor, g, = [(3/2)S:8]' 7 is the cffective stress,
I = ¢, is the identity tensor, v" iy Poisson’s ratio for the ductile material No. I and 21
either x or unity depending on whether plastic loading, clastic unloading or reloading takes
place. Here x = E!M/E'Y, the ratio of the tangent modulus in tension to Young's modulus
for the ductile material, is the appropriate hardening parameter.

Note that eqns (19) contain only four non-trivial equations {(including the plane strain
condition D, = 0). Thercefore, eqns (17), (18) and (19) form a system of six first-order
PDEs in the six dependent variables identified above. As inanti-plane strain, all six equations
are homogeneous in r, which again suggests that we look for asymptotic solutions of
variable-separable form

i

v, (r,0) = Ky(VIE )y (0 Qrr)'fs. vy(r.0) Ky(VIE'"™) vy (0)(2mr)' s,
Fo(r ) = Ky y )y 2rr)', o, (r ) = Ky () Qrry',
agulr.0) = Ky v () Qrr), ay(r ) = Kyvo()(Qnr)', (20)

i

where the plastic stress intensity factor Ky is now defined by
Ky = lrm(i) Qnr) o, 0).
and is again undetermined by the asymptotic analysis. Under small scale yielding conditions.

we cxpect this plastic stress intensity factor to depend on the yield stress and the applied
elastic stress intensity factors in a way to be elucidated in Part [T of this work.
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Putting the proposed solutions (20) into eqns (17)—(19), we obtain a system of six first-
order ODEs in the vectory = (¥, Vs, .-, Ve)

y(0) =£6,y;s.v" ). (0<8<n), (21

where the components of fare given in Appendix A, and depend on the parameter x. whose
value is in turn determined by the unloading condition

$(6,) =0, 22)
and the reloading condition
Ye(8,)/(sin@,) —3.(8:)/(sin ;)" = 0. (23)

where v.(0) and $(0) have been appropriately redefined.

These conditions are supplemented by appropriate stress and velocity continuity con-
ditions across the unloading and reloading boundaries. In the notation of the previous
section, they take the form

Bl=bld=...=ld=0 (24)

In the lower half of the interface, the governing equations are the equilibrium equations
(17) and (18). and the lincar stress-strain relations corresponding to an elastic material.
For the same reasons as for anti-plane strain, we assume solutions of the form (20) in
the lower half, with the only difference that in this case the velocitics are normalized
with respect to the Young's modulus for the brittle material, £°. The exact solution of
these equations can be obtained by complex-variable methods in terms of Muskhelishvili
potentials proportional to ' (where w = x,+ixv, is 4 complex variable), as in Ponte
Castanieda (1987¢). This leads to the following result for the angular variations of the
Cartesian components of the fields z; (F = 1,...,6) (corresponding to vy, s, 03, 6,1, 613,
gy, respectively)

20(0) = =s(1+v )AL (K +5) cos (s0—7) — s cos [(s — 2)0 —y] +cos [s(0 + 2m) + 7]},

(0) = —=s(1+v ) A{ (kP —s)sin (s8 —7) + 55in [(s—2)0 ~ 7] —sin [s(0+27) + 7]},

2(0) = A{ssin[(s =2)0—y] —(s+ 1) sin (s0 —y) —sin [s(0 + 2r) + 7]},

24(0) = A{ =scos[(s—2)0 —y] + (s + 3) cos (s0—y) +cos [s(+2n) + 7]},

25(0) = A{scos [(s=2)0—y] = (s— 1) cos (s0 —y) —cos [s(0 + 2m) + 7]},

Zo(0) = v {z,(0) + 2 4(0)}, (25
valid for —n € 0 <0, where A4 and y are arbitrary constants, x'* = 3—4v** for plane strain,

and where we have already imposed the traction-free conditions on the lower face of the
crack

yi(—=m) = ys(—n) =0.
It remains to impose the traction-free conditions on the upper face of the crack
yi(m) = ys(n) =0, (26)

and also to enforce continuity of the tractions and velocities across the interfacial line ahead
of the crack. which requires that
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¥{(0+) = Byi(0-),
y:0+) = Br.(0—).
y3(0+) = vy (0—).
»s(0+) = rs(0—). 27

where § = £'V/E(2) is the ratio of the Young's moduli of the two materials. Note that the
fourth equality was implicit in the definition of the plastic stress intensity factor. as is the
normalization

yo(0) = L

These conditions, together with the solutions in the lower half (25), allow the determination
of the values of v (0+), ¥2(0+). ¥3(0+) and y(0+) in terms of 5. z, . 7. v'" and v'*.
Likewise, the stress—strain relations for the ductile material on the upper half allow the
determination of v, {0+ ) and y(0+) in terms of the expressions

Ya0+) = =23 (0+) /s~ Alrd0+) + 1 (0+)]}.
}‘(,(0 +) = 5{}-[)'.;(0‘;" ) +~V§(O+ }I. {28)

with 2 = vV 4 (2 "'~ 1)/2, which are obtained by considering the limit as ¢ —» 0+ of the
expressions for D, and D,y in (19) with r fixed. Tt should be noted that the dependence of
¥{0+ ) on yis n-periodic, and therefore only values of y e [~ n/2, n/2] need to be considered.

Thus we have reduced this interfacial crack problem to a problem with exactly the
same form as the corresponding problem for the propagating crack in a homogencous
lincar-hurdening material considered by Ponte Castafieda (1987a), with the difference that
the conditions in the line ahead of the cruck are not those of mode I symmetry or mode I
antisymmetry, but instead these conditions take the more complicated, yet explicit form,
discussed above. By arguments similar to those made in the anti-plane strain section, we
are left with a nonlinear cigenvalue problem specificd by the sixth-order system (21) subject
to the six conditions (27) and (28) on the interfacial line abead of the crack, and the two
conditions (26) on the upper face of the cruck. This eigenvalue problem is to be solved for
the strength of the singulurity s, the “mixity” angle y, and the angular variations of the
ficlds y(8) for given values of the hardening parameter g, the ratio of the Young's moduli
5 and the Poisson’s ratios v'" and v'?. It is important to note the appearance of this new
mixity parameter which is to be determined by the above procedure. This feature has the
physical significance that, if the only solutions of the problem are of the assumed form
(20), then the mixity of the fields in the near-tip limit is determinate, and cannot be
prescribed arbitrarily as is the case for the corresponding stationary crack problem. This is
not a feature intrinsic to the inrerfucial crack ; in fact, Ponte Castafieda and Bose (1990)
have made analogous observations for the growing crack in the homogencous lincar-
hardening material (in this problem the only admissible solutions appear to be the symmetric
mode [ and the antisymmetric mode H solutions). The practical significance of this feature
will need to be assessed from the numerical solutions of the full small scale yiclding problem
by analyzing the behavior of the near-tip ficlds under the prescription of arbitrary mixities
of the remote applied elastic fields. This will be carried out in Part Il of this study,

Because the mixity angle y is hard to visualize, we introduce, following Shih (1974), a
plastic mixity parameter refated to y

2 w(r, 0 .
My = ﬁtan - (lim ?ﬂff»w)‘), (29)

r—=0 o”"(r’o)

This parameter, which has a period of 2, is such that my = | for pure mode [ and my =0
for pure mode .
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Concerning the well-posedness of this eigenvalue problem., it is important to note that
in the elastic limit (x = 1). the corresponding stress singularity (Williams, 1959) is complex
of the form s = — 1/2+i¢. so that variable-separable solutions of the form (20) exist only
if the bimaterial constant

£ = (l/27z) In [(K(I)/G(I)+ l/'Gclv)/(K(Z)/G(Z)_{_ I/G(l))]

vanishes. Note that this condition is satisfied if the two matenals are incompressible, or
trivially if they are identical. Otherwise, the near-tip asymptotic stress and deformation
fields are oscillatory in nature leading to “interpenetration™ of the crack faces. unless
contact is enforced near the crack tip (Comminou, 1977). In spite of this difficulty. Rice
(1988) has argued that these solutions provide useful information characterizing the near-
tip fields in typical circumstances when the size of the interpenetration zone is small
compared to the size of the crack. According to Hutchinson (1989), it is perhaps more
important to note that the tensile and shear effects are coupled in the vicinity of the crack
tip. making the understanding of interfacial fracture mechanics intrinsically harder than
the standard fracture mechanics of homogeneous materials. The consequence in the context
of our problem is that we expect difficulties in our solutions for values of 2 near unity when
the values of B, v'" and v'? arc such that the value of the elastic bimaterial parameter ¢ is
different from zero.

The numerical integration of eqns (21) was carried out by means of the same scheme
used in the anti-planc strain problem. In order to get started. we provide the values of s
and y, thus determining the values of y(04), y'(0+) for given values of a, ff, v v¥'. We
then integrate cqns (21) to determine y(0) for 0 < @ < n. Given the values of y () and
v(m), we cheek to see whether they vanish, and iterate in our guesses for s and y until
convergencee is achieved. Finally, we renormalize our solutions such that y.(6)) = 1. Note
that the determination of y’(0 + ) requires special numerical treatment, and also that vy and
ys are well-behaved near 00 = r, so that even though (21) is ill-conditioned at 0 =, a
procedure analogous to that used in the anti-plane strain case can be applied here also.

3.2. Linear-hardening results

Whenever the values of f, v'? and v*? are such that the elastic bimaterial parameter ¢
vanishes, there are two solutions to the above cigenvalue problem for all values of a such
that 0 < 2 € |; onc corresponding to a tensile-like solution with values of the mixity
parameter m,, close to unity, and the other corresponding to a shear-like solution with
values of the mixity parameter my, close to zero. On the other hand, whenever the values
of B. vV and v'? are such that the elastic bimaterial parameter ¢ is different from zero, there
exist two initially distinct solutions for small enough values of a, which coalesce at a
sufliciently large critical value of the hardening parameter, o, < 1. In this case no solutions
were found for vialues of a greater than «,.. As was noted above, this is consistent with the
lack of existence of variuble-scparable solutions in the elastic problem (x = |) when ¢ is
different from zero. Also note that the lack of existence of variable-separable solutions
does not preclude the existence of other more general solutions, which could be detected
by the numerical analysis of Part I1.

The specific results of this section are presented in Figs 4-10 and in Tables 2-5. Figures
4 show plots of the singularity strengths as functions of the hardening for different values
of B, v'" and v'*. Figure 4a shows results for the case where the elastic bimaterial parameter
is zero so that the elastic limit is well-defined. Results are given for a sequence of values of
f=0,0.5and 1, for v'" = v¥ = 0.5, and also for f# =0 and v'"" = v** = 0.3. For each
such combination of the material parameters, there are two curves: one corresponding to
the “shear™ solution, which has positive curvature, and the other corresponding to the
“tensile™ solution, which changes curvature at an intermediate value of the hardening. Note
also the cross-over behavior of the two solutions. Thus for a fixed value of §, the singularity
is stronger in the tensile solution for large hardening, but it is weaker for small hardening.
We can also see that s is stronger for larger values of . and stronger for larger values of v.
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Figurc 4b shows results for three cases when & # 0, corresponding to two cases with
values of f# 1 (0 and 0.5) and v'" = v/ = 0.3, and one case for which =1, but
v = 1/3 % ' = {/4. As anticipated in the previous subsection, no solutions were found
for values of a close to unity (the elastic limit), but two solutions exist for sufficiently small
values of «. These two solutions, which initially have a behavior that is similar to the zero-



Table 2a. Strength of the singularity, mode mixity. unloading and reloading angles

Stable crack growth along brittle/ductile interface—I

versus hardening in plane strain for the “tensile” solution (8 = 1, v'" = v =0.5)
2 5 Y g, #, g, g,

0.9 —0.49393 —0.46793 16.407 50.857 11594

08 —0.48669 —-0.49471 16.483 52.131 116.09

0.7 —-0.47786 —0.52451 16.484  53.537 116.32

0.6 —0.46679 -0.5579 16.371 55.057 116.7

0.5 -0.45236 —0.59564 16.069 56.621 117.31

04 —0.43245 —0.63882 15.429 58.001 118.39

0.3 —-0.40225 —0.68911 14.071 58.329 120.4

0.2 —0.34811 —0.75078 10.719 5296 124.2 178.94
0.1 —0.2434 —0.89432 3969 24247 128.62 167.48
0.05 -0.17203 —1.0453 0.731 3.891 131.07 158.55
0.03 —0.13572 —1.1102 130.88 [55.98
0.01 —-0.08024 —-1.2171 129.78 153.26
0.005 —0.05719 —~1.2661 129.14 152.37
0.001 —-0.0258 —1.3365 127.94 151.37

Table 2b. Strength of the singularity, mode mixity. unloading
and reloading angles versus hardening in plane strain for the

“shear” solution (f = 1. v'" = v'? = 0.5)
x 5 ¥ 0, 0,

0.9 —-0.49178 1.4072 43.52

0.8 -~().48229 1.3767 43.171

0.7 ~-047112 1.3406 42.827

0.6 —(.45764 1.2967 42.475

0.5 —0.43087 1.2419 42.089

0.4 -0.41919 [.1709 41.623

0.3 - 0.38964 1.073 40979

0.2 -0.3461 0.93168 39925

0.1 -0.27223 0.69177 37.712

0.05 —0.20648 0.48066 35.182

0.03 —0.1657% 0.35139 33.283

0.01 —-0.10061 0.14737 29.504 179.99
0.005 -0.07259 0.06114 27.471 179.98
0.001 —0.03343 —0.0569 23.882 179.95

19

& case (including the cross-over behavior), eventually coalesce at some critical value of the
hardening 2., smaller than unity. The value of « at which the coalescence of the solutions
takes place is smaller the larger the value of £. In our sample results, the three values of «,,
0.2740,0.4279 and 0.7395, correspond to the three values of £,0.9355,0.0305 and —0.01875.
In all cases, s is proportional to —a'* as 2 — 0, suggesting the possibility of existence of
solutions when the ductile material is perfectly plastic. By comparison to the results of
Ponte Castafieda (1987a) for the propagating crack in the homogeneous linear-hardening
material, we find that the singularity is in general stronger for the interfacial crack, except
for very small values of «, when the tensile homogencous solution is found to be anomalous
in that s does not approach zero as « approaches zero.

Figures 5 depict the corresponding results for the mixity parameter my, as functions
of « for the same combination of choices of #, v!" and v'?. Figure 5a gives results for the
case when the combination of clastic parameters is such that ¢ = 0. We find that one of the
solutions shows values of m, close to unity, and the other has values of m, close to zero.
This provides justification for our usage of the “tensile™ and *‘shear™ denominations for
the two solutions, respectively. although they are not strictly mode I or mode 11 solutions.
More specifically, the tensile solution is found to have mixity slightly larger than unity for
larger hardening, and smaller than unity for small hardening (this means that the in-plane
shear stress on the interfacial line changes sign at some intermediate value of «), and the
results show moderate dependence on the other parameters. The shear solution has mixity
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Fig. Sh. Mode mixity as a function of hardening for the set of “tensile™ and “shear” solutions

corresponding to the three different cases when the bimaterial clastic parameter ¢ # 0. In addition,

a “*mode!” solution is shown for the case when & = 0; this set of solutions is casily identified because

(unlike the £ # 0 solutions) the “tensile”™ and “shear™ solutions do not coalesce for any values of
the hardening parameter.

very close to 0.1 for all values of 2, and shows very little variation with the other parameters.
Note that in this case (when £ = 0), the fact that the mixities are distinct for the two
solutions shows that the solutions are indeed distinct even for values of x when the values
of s happen to coincide (this occurs for 2 = | and in the limit as 2 — 0, as well as when the
two solutions for s cross over). Figure Sb gives the corresponding results for the cases when



Table 3a. Strength of the singularity, mode mixity, unloading and reloading angles

Stable crack growth along brittle/ductile interface—I

versus hardening in plane strain for the “tensile” solution (8 = 0, v!" = v'¥ = 0.5)
2 s ¥ 9, 0, 9, 0,

0.9 —0.48806 -0.47126 15.964 50.003 115.6
0.8 —0.47427 —0.50226 15.579 50.273 115.38
0.7 -0.45802 —0.53768 15.098 50.495 11524
0.6 —0.43838 -0.57894 14479 50.605 115.22
0.5 —-0.4138 —0.6283 13.638 50.463 115.46
04 —0.38146 —0.6896 12.408 49.72 116.2
0.3 —0.33584 —0.77005 10.392 47.327 118.04 180
0.2 -0.26726 -0.87976 6.564 38.977 121.81 177.63
0.1 —0.18071 —-1.0309 1.336 13.426 126.24 168.25
0.05 —0.1284 -1.1273 126.42 163.94
0.03 —0.0998! —1.1817 125.85 162.24
0.0t —-0.05794 —1.2671 124.56 160.09
0.005 —0.04106 —1.3036 123.79 159.33
0.001 —0.01842 —1.3543 122.31 158.42

Table 3b. Strength of the singularity, mode mixity. unloading
and reloading angles versus hardening in plane strain for the

“shear™ solution (f = 0, v'" = v'? = 0.5)

2 s b 0, 0,
0.9 -(.48383 1.379 43.507
0.8 —(.46589 1.3188 43.071
0.7 -0.44579 1.25¢7 42.557
0.6 —-0.423 1.176 41.943
0.5 ~0.39671 1.0K9 41.191
0.4 —-0.36572 0.98722 40.24
0.3 -0.32796 0.86408 389719
0.2 -0.27935 0.70719 374
0.1 -0.20926 0.4844 34109
0.05 —-0.15462 0.31403 31.26 180
0.03 -0.12292 0.21679 29.337 180
0.01 —~0.07408 0.06Y88 25811 179.97
0.005 -0.05345 0.00929 24.008 179.96
0.001 -0.02472 -0.071272 20.898 179.92

the combination of paramecters is such that ¢ does not vanish (and also for comparison for
one casc when it does vanish). In this picture, it is clearly observed that the two solutions,
which are initially (for small a) distinct with mixities near zero and unity, eventually coalesce
at the critical value of @ = «,, reaching the same value for their mixities. This is clearly seen
for the case when f = | and the values of v are different. To deduce the same conclusion
for the cases when the values of v are the same, but # # 1, we need to take into account the
periodicity of the mixity, and note that for these two other cases the solutions meet at the
next branch of the solution. Also note that values of the mixity in the range from zero to
unity (unity to two) correspond to positive (negative) shear stress in the interfacial line
ahead of the crack. Therefore, the coalescent solutions can either have positive or negative
shear stresses in the interfacial line ahead of the crack, depending on whether ¢ is negative
or positive, respectively.

Tables 2-5 give more detailed results for the resulting values of the singularity strength
s. the mixity angle y, and the unloading and reloading angles 8, and 0, for the tensile and
shear solutions as function of the hardening parameter « for some of the above mentioned
choices for f#, v'"" and v'®., In general, the width of the plastic loading sectors is larger for
the tensile solution than for the shear solution, particularly for the smaller values of x. For
the larger values of 2, and mainly for the tensile solutions (and some shear coalescing
solutions), four and five sector (with alternating plastic loading and elastic unloading
sectors) solutions are observed that are reminiscent of the solutions observed by Ponte
Castaneda (1987a) for the antisymmetric growing cracks in the homogeneous linear-hard-
ening material. We recall that this is due to the fact that, because y,(8) may have two peaks,

SAS 17:1-1
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Table 4a. Strength of the singularity, mode mixity. unloading and reloading angles

versus hardening in plane strain for the “tensile” solution (§ = 0. v = v'> = 0.3)
2 5 v a, d, #, 0,

0.27396 ~0.34108 —1.2429 36831 41299 [17.32

0.2739 ~0.33147 - 1.2318 117.16

0.273 -~0.34216 - 1.2048 116.76

0.27 —~0.34234 - 1.1705 116.23

0.25 ~(.33723 - 1.0912 11492

0.2 -0.31366 - 1.0378 114.66

0.1 - (.20769 - 1.0466 126.71 171.51
0.05 ~0.1429 -1.1126 130.53 161.96
0.03 —0.11149 - 1.1674 129.82 160.07
0.01 -0.06488 - 1.2557 127.92 158.12
0.005 ~0.04601 - 1.2944 126 .81 157.56
0.001 —0.02066 - 1.3495 124.75 157

Table 4b. Strength of the singularity, mode mixity, unloading and reloading angles

versus hurdening in plane strain for the “shear” solution (f = 0, vV = v = 0.3)
2 N b g, i, o, i,

0.27396  —0.34108 1.8987 36.831 41299 117.32

0.2739 —-0.34072 1.8902 36.341 43067 11744

0.273 —-0.33926 {85397 33.555 47,366 11786

0.27 —{.33649 1.814% 35.105 52,058 118.44

.25 -{1.32367 1.6655 34.747 63887  120.11

0.2 - (). 209525 1.4242 34,491 79.329 12224

0.4 ~(.23628 .84931 13851 1259 {2922

.05 ~(.17223 .55004 s 186
4.03 ~ 013632 {1.39666 2948 180
0.0 ~().0819 0.17371 26.325 179.97
BAVIN - {).05909 0.08369 24,476 179.95
0.001 ~{L02736 ~{0.03773 pRDR {799

two additional regions may appear and the two angles €5 and 0, may be required to describe
the start of the new reloading zone and the new unloading zone, respectively. The two
angles (), and 7, retain their old meanings ; they are primary in the sense that they remain
in existence for small values of a.

Figures 6-10 give the angular variations (fixed r) of the stress and velocity fields for
the tensile and shear solutions in the vicinity of the crack tip for a few special choices of
the material parameters «, 8, v'" and v'?. Figures 6a and b correspond, respectively, to the
tensile and shear solutions for the stress fields of an aluminum/alumina composite with
typical values for the material parameters of x = 0.1, =02, v'" = 1/3 and v'® = 14
(¢ = 0.045786). The associated values of 5 and my, are —0.218488 and 1.075537, and
—0.24519 and 0.00984, respectively. Figures 7a and b give the corresponding results for
two coalescing solutions : the first one corresponds to a critical value of « = 0.75947, and
values of i = 1, v'Y = 1/3 and v** = 1/4 (¢ = —0.01875), and the second onc to a critical
value of o = 0.27396, and values of f = 0, v'"! = v'* = 0.3 (& = 0.9355). It can be scen that,
whereas the previous set of results can be identified with a tensile- and a shear-like solution,
these fields are fully mixed, and quite different in nature (for example, in Fig. 7b the shear
stress in the interfacial line is very large and negative in sign). Figures 8a and b give the
stress distributions for the tensile and shear solutions corresponding to a very small valuc
of the hardening, x = 0.001, for # = 0 and v'V = v'? = 1/2. The striking feature of Fig. 8a
is the extremely large level of triaxiality (more than 3 times the yield stress in tension) on
the interfacial line, in addition to a moderate level of the shear stress, and it is vaguely
reminiscent of the mode I Prandtl-like solution of Drugan et al. (1982) (without the
constant-stress scctor ahead of the crack, but instead with a centered-fan sector starting
right at the interface). On the other hand, the shear solution has a dominant, but small
level of shear stress in the tnterfacial line, and the distribution of the stresses is reminiscent
of the mode I solution of Slepyan (1974) for the homogencous perfectly plastic material.
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Table 5a. Strength of the singularity, mode mixity. unloading and reloading angles

versus hardening in plane strain for the “tensile™ solution (§ = 1. v'"' = 1/3,
‘,(Z) = l/4)
s . 0, 0. 0, 0,
0.75945 —0.48938 0.18945 74.014
0.7594 —0.48958 0.16287 75.85
0.759 —0.48972 0.139 77.587
0.755 —0.48981 0.06616 83.361
0.7 —0.48588 —0.13013 99.964
0.6 —0.47615 —0.26529 109.08
0.5 —0.4629 -0.36028 113.92
04 —0.44423 —0.44427 19.036 24.017 117.53
03 —0.41607 —0.5266 16.556  28.522 120.9
0.2 —0.36767 —0.62375 125.57 179.77
0.1 —0.26839 —0.81925 128.57 170.85
0.05 —-0.18855 -~ 1.0045 {31.62 160.53
0.03 —0.1489 —1.0846 132.05 156.54
0.01 —0.08865 —1.1987 130.89 153.24
0.005 —0.06332 —1.2521 130.19 152.13
0.001 -0.02863 —1.3298 128.89 150.87

Table 5b. Strength of the singularity, mode mixity, unloading
and reloading angics versus hardening in planc strain for the

*shear” solution (f = [, vV = 173, v'¥ = 1/4)
x x v b, 0,

0.75945  ~0.48938 (0. [8945 74.014

0.7594 ~(1.480932 0.19656 73.541

0.759 —().48900 0.2230t T1.848

0.755 -0.48776 0.31926 65.511

0.7 -.47816 0.66769 54222

0.6 -0.46185 0.86965 49.155

0.5 —0.44795 0.95016 46.721

0.4 -0.42807 0.9732 45.023

0.3 -0.40107 1.9499 43.548

0.2 -0.36057 0.86929 41913

0.1 —0.28898 0.68145 39.286

0.05 —0.22225 0.48946 36.544

0.03 -0.17972 0.36444 34.53 180
0.01 —0.11008 0.15943 30.487 180
0.005 -0.07968 0.07078 28.294 179.9%
0.001 —-0.03685 -0.05179 24.389 179.95

Finally, Figs 10 give the velocity distributions for the tensile and shear solutions cor-
responding to a small value of the hardening parameter (x = 0.001), and two values of 8
(0 and 1). It is seen that, even though s is small, the choice of the radial dependence for the
velocity (#/s) leads to bounded variations for the angular dependence of the fields.

3.3. Formudation of the perfectly plustic problem

In this section, we deal with the same interfacial growing crack problem as in the
previous section with the difference that the plastic behavior of the material in the upper
half will be taken perfectly-plastic of the Mises-type instcad of linear hardening. Thus, the
same cequilibrium equations (17) and (18) apply, and the stress-strain relation takes the
form of (19), where now A > 0is an undetermined scalar function for active plastic loading,
that vanishes for elastic unloading. Hence, in the regions of active plastic response, the
governing equations must be supplemented by the Mises yield condition

a. = [(3/2)S:S]"* = /31, (30)

where S is the stress deviator, and t, is the yield stress in shear.
Rice (1982) has shown that these governing equations admit only four types of asymp-
totic solutions with bounded stresses and logarithmic velocities. Thus, in the vicinity of the
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Fig. 6a. Angular variations of the “tensile™ stress ficlds in plane strain for aluminum;alumina
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Fig. 6b. Angular variations of the “shear™ stress fiedds in plane strain for aluminum/alumina

(x=0.1. =02 v"=1/3 v = 1/4).

crack tip, we can only have four types of sectors meeting along radial lines emanating from
the crack tip : singular plastic scctors of cither the constant-stress or centered-fan type, non-
singular plastic scctors and elastic sectors. The stress and velocity fields in each of these
sectors (with the exception of the non-singular plastic sectors) can be found explicitly. The
resulting fields need to be connected across the straight boundaries separating them. Drugan
and Rice (1984) have shown that all the components of the stress must be continuous across
such quasi-statically propagating boundaries. Additionally, they have shown that, except
under exceptional circumstances, the velocity fields must also be continuous. Here, we will

look for solutions with continuous velocity fields.
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Fig. 7b. Angular variations of the stress fields for a ““coalescing™ solution in plane strain (z = 0.27396,
B=0v'"=v"=03,¢=09355).

The fields can also be determined explicitly for the brittle material on the lower half,
but, for simplicity, in this work we will assume that the brittle material is rigid. This will
obviate the need to solve for the fields in the lower half, and therefore simplify the analysis
considerably.

It follows that the appropriate boundary conditions for this problem are the traction-
free condition on the upper crack face, requiring that

6.4(r, 1) = ay(r,n) =0, (€2))]

and the condition of continuity of the velocities on the interfacial line ahead of the crack,
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requiring in turn that

r,(r,0) = vy(r,0) = 0. (32)

The condition of continuity of tractions serves only to determine the stress level on the
lower half of the interface.

3.4, Perfectly-plastic results
Anticipating that the perfectly-plastic results will be related to the results obtained in
the previous section for small hardening, we seek solutions for the perfectly-plastic problem
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having a centered-fan sector ahead of the crack (0 < 0 < 0,), followed by an elastic unload-
ing sector (0, < 0 < 0,), and then by a constant-stress sector extending to the upper crack
face (0, < 8 < n), that in addition satisfy the boundary conditions (31) and (32). For
simplicity, we will only consider here the case when the ductile material is incompressible
(»'" = 1/2), which results in 6, = (6,,+04)/2. Then, making use of the results of Rice

(1982), we have the following expressions for the stress and velocity fields in the different
sectors .
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(i) Centered-fan sector

G = Tos O = Oyg = Tofd —20),

—(5=4 ") (1o/EYVsin0In (r/R),
(5—4v Nt/ E"YV(1 —cos0) In(r/R),

I

A= —(S—a4'"YVR2E ) In(r/R)/r.
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(11) Elastic sector
s = 1,[B,(20+5in 20) — B, cos 20+ C 3],
o1 = To[48, Inlsin 6] + B, cos 20+ B:(20+sin 20) + C ]
Gy = To[— B, cos 20+ B, (280 —sin 20) + C 1], (36)

= 4(1=v") (2o EVB, In(r/R).
2= 4(1—=v'"" ) V(1/E) B, In (7/R). (37

(ii)) Constant-stress sector

0’(2:0. 0'”:2'((). G::——-O. (36)

ey =41 =" YW (t, /EYD, In(r/ R).
vy = 4(L—v ") V(g [E)D: In(r/R), (39)

A = (V/IEXD, costi+ Dysin{rcos20) . (40)

Note that the boundary conditions (31) and (32) have already been imposed in the derivation
of these results. Here R is a measure of the size of the plastic zone that is left undetermined
by the asymptotic analysis.

These ficlds involve 10 unknown constants (4. 8, 8,. C(s. Cyy. Cooo DL D 8 and
#1,), and must be subjected to continuity of the three in-pluance stresses (a4 1s automatically
continuous) and the two in-plane velocities across cach of the two (unloading and reloading)
boundarics for a total of 10 conditions, Two sets of solutions of this nonlinear algebraic
system were found. The first set of solutions corresponds to a “tensile™ solution, and is
given by

0, ~ 118.57801", 0, 157.16784 ",
B, =D, ~ ~0878167, By, =D~ — 1478355,
A x 5.696077. C\y ~ 3.156512,
C,, ~ 6.341533, Cyy = 8.554228, (41)

and the second corresponds to a “shear™ solution, and is given by

0, ~9.70575 . 0, 179.81688 ",
B, =D, ~ —0.168588, B,=D,~ —0.0143135,
A~ 0.0867062, Cyr ~ 1.042803.
Ci x —1.616376, Cir = —0.0786508. (42)

The associated stress ficlds are depicted in Figs 9a and b, respectively. Note that the yicld
condition is nowhere violated (6. < o, for 0, < # < ),). Also note that A > 0 ncar the
crack tip in both plastic scctors. The angular variations of the velocitics are shown in Figs
10. Also, the near-tip plastic mixity factors for the two solutions are my, = 0.88936. and
my = 0.03506. respectively. [t is interesting to remark that, as was the case with the anti-
plane strain solutions, the angular variations of the stress and velocity fields for the tinear-
hardening problem appear to approach the corresponding perfectly plastic variations,
provided the radial dependence of the velocities is appropriately normalized with respect
to s.
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4. CONCLUDING REMARKS

In Part [ of this work. we have presented exact solutions to the asymptotic problem
of a steadily and quasi-statically propagating two-dimensional crack along the interface
between a brittle material and a linear-hardening. or perfectly-plastic. ductile matenal.
under anti-plane and plane strain conditions.

In the case of anti-plane strain with linear-hardening behavior for the ductile phase,
the analysis determines the strength of the assumed power singulanty, as well as the
associated angular variations of the stress and velocity fields for all values of the hardening
parameter. The amplitude of these fields. or plastic stress intensity factor, is left unde-
termined by the asymptotic analysis. The determination of this plastic stress intensity factor
under small scale vielding conditions is one of the goals of Part 1T of this work. In addition
to these linear-hardening solutions. it was also remarked that the solution for a growing
crack in a homogeneous perfectly-plastic solid of Chitaley and McClintock (1971) is also
a solution for the growing interfacial crack problem when the ductile material is pertectly-
plastic. and the brittle matenial is rigid.

In the case of plane strain with lincar-hardening behavior for the ductile material, the
asymptotic analysis not only determines the strength of the singularity and the angular
variations of the fields, but also, surprisingly [this is by contrast to the mixed-mode station-
ary crack solutions of Shih (1974)]. the “mixity™ of the near-tip fields. Thus, it is tound
that two distinct solutions exist with shightly differing singularity strengths, and distinct,
but determinate, mixities on the intertacial line ahcad of the crack. For small enough
hardening. one of the solutions corresponds to a tensile-hike mode, whereas the other
solution corresponds to a shear-like mode. These two solutions coalesce at an intermediate
critical level of the hardening, il a certain bimaterial parameter is not zero. In this case, no
variable separable solutions are Tound for values of the hardening parameter larger than
the critical level, On the other hand, if the bimaterial parameter vanishes, the two solutions
remain distinet for all values of the hardening parameter up to the perfectly-clastic limit,
As we have seen, this picture is consistent with the fact that no variable scparable sotutions
exist for the corresponding lingar-clastic problem when the bimaterial parameter is nonzero.
In addition to these linear-hardening solutions, we have also found two similar solutions
for the corresponding planc strain problem with a perfectly-plastic ductile matertad bonded
to a rigid brittle material. These solutions are fully continuous, and are consistent with the
small-hardening results, depicting fixed mixities at the crack tip that correspond to a tenstle-
and a shear-like solution. The numerical analyses of Part 11 will determine what role, if
any. the asymptotic solutions play in the full solution of the corresponding interfacial small
scale yielding problems, and if applicable, it will determine the corresponding plastic stress
intensity factors, and analyze their dependence on the applied elastic stress intensity factors
(and their mixity).

It is important to note that the prediction of discrete and determinate asymplotic
mixitics at the crack tip does nor seem to be an artifact of the interfacial nature of the
problem, but instead of the quasi-static crack growth feature. Ponte Castaneda and Bosc
(1990) have made parallelobservations for crack growth ina homogencous lincar-hardening
material. Furthermore, as the linear-hardening and perfectly plastic interfacial growing
crack solutions developed here show, this phenomenon of fixed mixities at the crack tp
does not seem to be dependent on the specific constiturive model for the ductile muterial,
nor on the variable-separable nature of the lincar-hardening solutions (the perfectly-plastic
solutions are not variable-separable!). IU is also worth mentioning that even if lincar-
hardening is not an accurate model for the plastic behavior of ductile materials at large
strains. the lincar-hardening solutions derived in this work could at the very least be
interpreted as a uscful interpolation between the two limiting cases corresponding (o
perfectly-clastic and perfectly-plastic behavior for the ductile phase. Since the essential
feature of stable crack growth is the dissipation of encrgy via the production of residual
plastic strains in the wake of the crack. it can be argued that the role played by hardening
in this phenomenon is more important than the specific model of hardening sclected. Given
the well-known difficultics associated with near-tip asymptotic analysis of growing cracks
with other hardening models, the choice of a lincar-hardening model in this work should
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be amply justified. Perhaps a more critical issue would be the inclusion of finite kinematics,
if the goal of the analysis is to predict accurately the fields very close to the tip of the crack.
Lastly, in the context of application to practical problems, the asymptotic solutions obtained
in this part of the work correspond to the most singular term in an expansion that may
include other terms in order to ensure satisfaction of the appropriate conditions on the
boundary of the specimen. For this reason, the significance of these asymptotic solutions
should be viewed in the context of a larger scheme including numerical solutions of the type
carried out in Part II.
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APPENDIX A: THE GOVERNING SYSTEMS OF ODEs

Anti-plune strain
S/
f: = —(s+ 1)1,

= (sinf0 7)) " '[(s/2) cos Oy, +sin 0Ty + y1]

fi=—=s'sin0 y, —s'cost y,—s(@ ' = D)T,y,+3(2~' = Dsind 7, 5./,

where

T, =[l+(x ' = DF

T, =[t+(x ' =D+ DF)

T, = [scosO+(s+ )sin0 5 5,)
and

Fo=07r).

Plane strain

fi = (F=x)y; =25 cosO(1 +v) + (3/2)(z~ '— )]y, —~2sin0T,

fr= —y, =stcosl[z (2 "=y |—xsin0 T,
/‘v = '—(l +-")A"a +y
fo=(sind) Ty 1o}
Jo= =+,
o= (Isin) Tyt ..}
where
Ty =stl+v)y =3/ LIy

Ty=syv+e(fi=2n+ fo) =@ =1,

Ty = [+ = DE+@ ' = DEl == = DLEF)

L=

Xy= = (120 ys+¥s) x5 = Pe=U2)at+rs) xo = Yo (1/2)(ra+ys)

Zy = pa—v(Fstyy) s = v(yatse) Te= e v(ri+)s)

APPENDIX B: THE PERFECTLY-PLASTIC SOLUTION FOR ANTI-PLANE STRAIN

Centered-fun plastic sector (0 < 0 < ()
T = 1,6,

ry = —V(14/G)sinllnr.

Elastic unloading sector (0, < 0/ < 0)
1= t,[(C+ Blin[sinf|) e, + (4 + B0)e)]
vy = V(14/G)BlInr.

Constant stress sector (0, < 0 < )
T =1,

vy = V(t,/G)BInr



where
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A=cost,+0,sind,

B = ~sinb,
C =sinf, [Inlsin8,{ 1]
0, = 19.7112°

0, = 179.6334".
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